EPS@ISEP | The European Project Semester (EPS) at ISEP


Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
playground:playground [2015/05/26 11:36] team4playground:playground [2015/06/12 14:14] (current) team4
Line 1: Line 1:
  
-To be able to calculate how many watts we need for a heater we are forced to come with a scenario and the next formulas\\ +FEEDER:
-The heat transfer rate Equation \ref{eq:one} [(eq1)]:\\+
  
-$q$ total energy loss in time\\ +Our first idea was to create a (feeder) to feed the fish. The construction of the feeder was this: it was a plexiglaas box, which had a spindle at the bottom. The food fell directly to the spindle because of the slope we had designed in the bottom of the box (picture…). The screw was inside a PVC pipe open at the top. The spindle protruding from the box so that the food fell into the tank, so now the pipe was open at the bottom (picture…). The operation was: we introduced the food at the top of the box, the food fell directly to the worm. motor turned the splindle until the food fell into the tank.
-$U$<sub>0</sub> - overall outside heat-transfer coefficient\\ +
-$A$<sub>0</sub> - outside area \\ +
-$ΔT$ - Difference of temperature \\+
  
-\begin{equation} +TO INCLUDE THIS IDEA IN 8.2
-\begin{aligned} +
-      \dot{q} = U_0\cdot A_0\cdot \Delta T_{Total} \\ +
-   \label{eq:one} +
-   \end{aligned} +
-\end{equation}+
  
 +another improvement we wanted to include was a feeder and control fish food. We explain the idea in the point... but this idea was not included because it exceeded our budget
  
-Unknown coefficient is $U$<sub>0</sub> and to find $U$<sub>0</sub> we have the next Equation \ref{eq:two} [(eq2)]:+8.2 
 +¿¿¿As we have said due to lack of time and money in the budget, we did not include features that are important for the development of our aquaponic system. Water quality is very important for fish health.???
  
-\begin{equation} +Water quality is very important for fish health. The control of the water is based on temperature, pH and dissolved oxygen. Our aquaponic system controls the temperature so in the future development of our  aquaponic system  it would be necessary to control the pH and dissolved oxygen. The pH is involved in the process of nitrification (conversion of fish waste in a less toxic and compound acceptable to plants), it is essential in the availability of plant nutrients (manganese, copper, zinc and boron) and must be appropriate to the species of fish that wants to grow. Dissolved oxygen has to be suitable (above 3 mg / L) for a good nitrification.
-\begin{aligned} +
-     {\frac{1}{U_0}=}\boxed{\frac{1}{h_i \cdot {\frac{A_i}{A_o}}}} + {\frac{x}{k_{PEHD} \cdot {\frac{A_{Lm}}{A_o}}}} + \boxed{\frac{1}{h_o}} \\ +
-     \label{eq:two} +
-\end{aligned} +
-\end{equation}+
  
-$U$<sub>0</sub> - heat-transfer coefficient\\ 
-$x$ - thicknes of the material \\ 
-$h$<sub>i</sub> - heat-transfer coefficient inside\\ 
-$h$<sub>o</sub> - heat-transfer coefficient outside\\ 
-$A$<sub>Lm</sub> - logaritmic area of the film\\ 
-$A$<sub>i</sub> - inside area \\ 
-$A$<sub>o</sub> - outside area \\ 
-$k$<sub>PEHD</sub> - material polyethylene high-density \\ 
  
  
-First box it is resistance of water and the second box is resistance of air.\\ 
  
-To find $h$<sub>i</sub> and $h$<sub>o</sub> we will use formula of natural convection heat transfer.\\ 
-The average natural convection heat transfer coefficient can be expressed by the following general Equation \ref{eq:three} [(eq3)]. 
  
-\begin{equation} 
-\begin{aligned} 
-      {N_{NU}=}{\frac{h \cdot L}{k}} = {a} \cdot \left( {\frac{L^3 \cdot \rho^2 \cdot g \cdot \beta \cdot \Delta T}{\mu^2}} \cdot {\frac{c_p \cdot \mu}{k}} \right)^m = {a} \cdot \left(N_{Gr} \cdot N_{Pr} \right)^m \\ 
-      \label{eq:three} 
-\end{aligned} 
-\end{equation} 
  
-$N$<sub>Nu</sub> - Nusselt number (dimensionless/adimensional number)\\ 
-$h$ - film coefficient of heat transfer\\ 
-$L$ - length [m]\\ 
-$k$ - thermal conductivity [W/m·k]\\ 
-$a$ - constant [(table)] \\ 
-$ρ$ - density [kg/m<sup>3</sup>]\\ 
-$g$ - gravitational acceleration 9.81 [m/s<sup>2</sup>]\\ 
-$β$ - volumetric coefficient of expansion of the fluid (Equation \ref{eq:beta}) [1/K] [(beta)]\\ 
-$ΔT$ - positive temperature difference between the wall and bulk fluid in [K]\\ 
-$μ$ - viscosity [kg/m·s]\\ 
-$c$<sub>p</sub> - heat capacity [J/kg·K]\\ 
-$m$ - constant [(table)] \\ 
-$N$<sub>Pr</sub> - the Prandtl number (dimensionless/adimensional number)\\ 
-$N$<sub>Gr</sub> - the Grashof number (dimensionless/adimensional number)\\ 
  
-\begin{equation} 
-\begin{aligned} 
-   {β}={\frac{\rho_b - \rho}{\rho(T-T_b)}} \\ 
-   \label{eq:beta}  
-\end{aligned} 
-\end{equation} 
  
-The water tank is uncovered and in our case is a cylinder with the next characteristics:\\ 
-  * radius 0.77 m 
-  * height 0.55 m 
-  * cylinder thickness 0.005 m 
-  * material PEHD (polyethylene high-density) 
-  * top uncovered  
-  * bottom covered 
  
-For calculation of heat loss we need e scenario where conditions are a little bit exaggerated. \\ 
-The scenario:\\ 
-Water temperature is 25 ºC and outside of the tank, air temperature is 15 ºC. \\ 
-The next diagram represents our case of heat flow through wall Figure {{ref>flabel199}}  (section of water tank wall).\\ 
  
-<WRAP> 
-<figure flabel199> 
-{{ :playground:heat_transfer_diagram.png?400 |}} 
-<caption>Heat flow through a wall</caption> 
-</figure> 
-</WRAP> 
  
-The next calculations represent heat loss inside ($h$<sub>i</sub>) and heat loss outside ($h$<sub>0</sub>): 
-We take the general formula for natural heat transfer Equation \ref{eq:ght}. 
  
-\begin{equation} 
-\begin{aligned} 
-       {\frac{h_i \cdot L}{k_{water}}} = {a} \cdot \left( {\frac{L^3 \cdot \rho^2 \cdot g \cdot \beta \cdot \Delta T}{\mu^2}} \cdot {\frac{c_p \cdot \mu}{k}} \right)^m \\ 
-       \label{eq:ght}  
-\end{aligned} 
-\end{equation} 
  
-Characteristics of water at our specific temperature we take from a website [(watertp)] and we will interpolate where we need. 
  
-$L$ = 0.77 m \\ 
-$ρ$<sub>water</sub> at 23.75 ºC = 997.4 [kg/m<sup>3</sup>] \\ 
-$ΔT$ = 25-15 = 10 [ºC] \\ 
-$c$<sub>p water</sub> at 23.75 ºC = 4181.5 [J/kg·K] \\ 
-$μ$<sub>water</sub> at 23.75 ºC = 9.2·10<sup>-4</sup> [kg/m·s]\\ 
-$k$<sub>water</sub> = 0.6004 [W/m·K]\\ 
-For $β$ Equation \ref{eq:beta1} we calculate: \\ 
  
-\begin{equation} 
-\begin{aligned} 
-    {β} =& {\frac{\rho_{25} - \rho_{22.5}}{\rho_{22.5}(T_{22.5}-T_{25})}} = \\ 
-    {β} =& {\frac{997.1-997.7}{997.7-(22.5-25)}} = 2.4 \cdot 10^{-4} \\ 
-    \label{eq:beta1} 
-\end{aligned} 
-\end{equation} 
  
  
-We take the general formula for natural heat transfer Equation \ref{eq:ght1} in order to know $h$<sub>i</sub>. 
  
-\begin{equation} 
-\begin{aligned} 
-    {\frac{h_i \cdot L}{k_{water}}} = & {a} \cdot \left( {\frac{0.77^3 \cdot 997.4^2 \cdot 9.81 \cdot 2.4 \cdot 10^{-4} \cdot 10}{(9.2 \cdot 10^{-4})^2}} \cdot {\frac{4181.5 \cdot 9.2 \cdot 10^{-4}}{0.6004}} \right)^m \\ 
-    {\frac{h_i \cdot L}{k_{water}}} = & a\cdot (8.1 \cdot 10^{10})^m \implies  a=0.13 \ ; \ m={\frac{1}{3}} \\ 
-    {\frac{h_i \cdot L}{k_{water}}} = & 0.13 \cdot (8.1\cdot 10^{10})^{\frac{1}{3}} \\ 
-    {\frac{h_i \cdot 0.77}{0.6004}} = & 0.13 \cdot (8.1\cdot 10^{10})^{\frac{1}{3}} \\ 
-    h_i = & {\frac{0.6004}{0.77}} \cdot 0.13 \cdot (8.1\cdot 10^{10})^{\frac{1}{3}} \\ 
-    h_i = & 438.648 \ {\frac {W}{m^2 \cdot k}} \\ 
-    \label{eq:ght1} 
-\end{aligned} 
-\end{equation} 
  
  
  
-Characteristics of air at our specific temperature we take from a website [(airp)] and we will interpolate where we need. 
  
-$L$ = 0.77 m \\ 
-$ρ$<sub>air</sub> at 16.75 ºC = 1.219 [kg/m<sup>3</sup>] \\ 
-$ΔT$ = 25-15 = 10 [ºC] \\ 
-$c$<sub>p air</sub> at 16.75 ºC = 1004.5 [J/kg·K] \\ 
-$μ$<sub>air</sub> at 16.75 ºC = 1.8·10<sup>-5</sup> [kg/m·s]\\ 
-$k$<sub>air</sub> = 0.0249 [W/m·k]\\ 
-For $β$ Equation \ref{eq:beta2} we calculate: \\ 
  
-\begin{equation} 
-\begin{aligned} 
-    {β}= & {\frac{\rho_{15} - \rho_{17.5}}{\rho_{17.5}(T_{17.5}-T_{15})}} \\ 
-    {β}= & {\frac{1.219-1.216}{1.216-(17.5-15)}} = 9.9 \cdot 10^{-4} \\ 
-    \label{eq:beta2} 
-\end{aligned} 
-\end{equation} 
  
-We take the general formula for natural heat transfer Equation \ref{eq:ght2} in order to know $h$<sub>i</sub>. 
  
-\begin{equation} 
-\begin{aligned} 
-    {\frac{h_o \cdot L}{k_{air}}} = & {a} \cdot \left( {\frac{0.77^3 \cdot 1.219^2 \cdot 9.81 \cdot 9.9 \cdot 10^{-4} \cdot 10}{(1.7 \cdot 10^{-5})^2}} \cdot {\frac{1004.6 \cdot 1.7 \cdot 10^{-5}}{0.0249}} \right)^m \\ 
-    {\frac{h_o \cdot L}{k_{air}}} = & a\cdot (1.5 \cdot 10^{8})^m \implies  a=0.59 \ ; \ m={\frac{1}{4}} \\ 
-    {\frac{h_o \cdot L}{k_{air}}} = & 0.59 \cdot (1.5 \cdot 10^{8})^{\frac{1}{4}} \\ 
-    {\frac{h_o \cdot 0.77}{0.0255}} = & 0.59 \cdot (1.5 \cdot 10^{8})^{\frac{1}{4}} \\ 
-    h_o = & {\frac{0.0255}{0.77}} \cdot 0.59 \cdot (1.5 \cdot 10^{8})^{\frac{1}{4}} \\ 
-    h_o = & 2.107 \ {\frac {W}{m^2 \cdot k}} \\ 
-    \label{eq:ght2} 
-\end{aligned} 
-\end{equation} 
  
-We return to the Equation \ref{eq:foruo}. 
  
-\begin{equation} 
-\begin{aligned} 
-     {\frac{1}{U_0}=}\boxed{\frac{1}{h_i \cdot {\frac{A_i}{A_o}}}} + {\frac{x}{k_{PEHD} \cdot {\frac{A_{Lm}}{A_o}}}} + \boxed{\frac{1}{h_o}} \\ 
-     \label{eq:foruo} 
-\end{aligned} 
-\end{equation} 
  
-$A$<sub>i</sub> = 3.424 m^2 \\ 
-$A$<sub>o</sub> = 3.456 m^2 \\ 
-$k$<sub>PEHD</sub> thermal conductivity = 0.48 [(pehdtc)]. \\ 
-$A$<sub>Lm</sub> - log mean area \\ 
-$A$<sub>Lm</sub> Equation \ref{eq:alm} is: 
  
-\begin{equation} 
-\begin{aligned} 
-     A_{L_m} = & {\frac{A_o-A_i}{ln{\frac{A_o}{A_i}}}} \\ 
-     A_{L_m} = & {\frac{0.55-0.545}{ln{\frac{0.55}{0.545}}}} \cdot 2 \cdot \pi = 3.44 \ m^2 \\ 
-     \label{eq:alm} 
-\end{aligned} 
-\end{equation} 
  
-Now we know $h$<sub>i</sub>$h$<sub>o</sub> and we can apply Equation \ref{eq:uof}.+- The reasons why we decided Raspberry Pi B + against BEAGLEBONE Black are:\\  
 +-  
 +- - USB: B + Raspberry Pi has 4 X USB 2.0 CONNECTOR vs 1 X USB 2.0 CONNECTOR BLACK BONE beable. For our aquaponic system we  need to connect with Arduinocamera and wireless Ethernet so we need more than one USB.\\  
 +- - COMMUNITY: Raspberry Pi has sold over one million units and it have more coverage in the medial comunication and global exposure. Beagle Bone glack has a growing community but it's not enough. raspberry pi production generates 13 times more productivity than beaglebone black\\  
 +- - As for our aquaponic system is as valid as Raspberry Pi B + bone Beagle but  the price was decisive. As we can see from the chart the price of Raspberry Pi B + is € 31.95 compared to € 61.56 Beagle Bone Black. As our product has to have a lower price of 250 € we decided that was a good choice Raspeberry.\
 +- To decide between a component or another, we have chosen a model of Arduino uno and other TI LaunchPad MSP430 . After we have made a comparison table 
 + We have chosen Arduino Uno because:   
 +-  
 +- - Arduino have a massively huge community supportThis is not to be under-estimated.\\  
 +- - In Arduino there is no limit in a future expansion because the boards called '​shields'​ can be stacked on top of the board to add features, in the The MSP430 that’s not possible.\\  
 +- - Arduino one Can run at 5V or 3.3V (or anywhere between 1.8V and 5V if you change oscillators) while The MSP430 caps out at 3.6V.\\  
 +- - The Arduino have IO pins, 20 while the MSP430 have 16. It might not seem like a huge difference, but some  projects where It's used 18 of those pins after using a pin expander to gain 8 more.\\
  
-\begin{equation} 
-\begin{aligned} 
-       {\frac{1}{U_0}}= & \boxed{\frac{1}{438.648 \cdot {\frac{3.424}{3.456}}}} + {\frac{0.005}{0.48 \cdot {\frac{3.44}{3.456}}}} + \boxed{\frac{1}{2.107 \cdot 3.456}} \\ 
-       {\frac{1}{U_0}} = & 0.002 + 0.010 + 0.475 \\ 
-       U_0 = & 2.053 \ {\frac{W}{m^2 \cdot k}} \\ 
-       \label{eq:uof} 
-\end{aligned} 
-\end{equation} 
  
-From the heat transfer Equation \ref{eq:qwall} we can determine $q$<sub>wall</sub>:\\ 
- 
-\begin{equation} 
-\begin{aligned} 
-      \dot{q}_{wall}=& U_0 \cdot A_0 \cdot \Delta T_{Total}\\ 
-      \dot{q}_{wall}=& 2.053 \cdot 3.456 \cdot 10 \\ 
-      \dot{q}_{wall}=& 70.952 \ W \\ 
-      \label{eq:qwall} 
-    \end{aligned} 
-\end{equation} 
- 
-Until now we know lost of the heat through the wall in watts. The next calculation are for heat loss of water directly with air (top side water tank) as shown in Figure {{ref>flabel198}}. 
- 
-<figure flabel198> 
-{{ :playground:heat_transfer_diagram_2.png?300 |}} 
-<caption>Heat flow between water and air</caption> 
-</figure> 
- 
-For water surface in direct contact with the air. 
- 
-$D$ = 1.1 m 
-$L$ = 0.9·D = 0.99 \\ 
-$ρ$<sub>air</sub> at 20 ºC = 1.205 [kg/m<sup>3</sup>] \\ 
-$ΔT$ = 25-15 = 10 [ºC] \\ 
-$c$<sub>p air</sub> at 20 ºC = 1004.7 [J/kg·K] \\ 
-$μ$<sub>air</sub> at 20 ºC = 1.8·10<sup>-5</sup> [kg/m·s]\\ 
-$k$<sub>air</sub> = 0.0257 [W/m·K]\\ 
-For $β$ Equation \ref{eq:beta3} we calculate: \\ 
- 
-\begin{equation} 
-\begin{aligned} 
-    {β}= & {\frac{\rho_{25} - \rho_{15}}{\rho_{15}(T_{25}-T_{15})}} \\ 
-    {β}= & {\frac{1.183-1.227}{1.227-(25-15)}} = 3.6 \cdot 10^{-3} \\ 
-    \label{eq:beta3} 
-\end{aligned} 
-\end{equation} 
- 
-We replace in Equation \ref{eq:hw} with the above data and results:\\ 
- 
-\begin{equation} 
-\begin{aligned} 
-    {\frac{h_w \cdot L}{k_{air}}} = & {a} \cdot \left( {\frac{0.99^3 \cdot 1.205^2 \cdot 9.81 \cdot 3.6 \cdot 10^{-3} \cdot 10}{(1.8 \cdot 10^{-5})^2}} \cdot {\frac{1004.7 \cdot 1.8 \cdot 10^{-5}}{0.0257}} \right)^m \\ 
-    {\frac{h_o \cdot L}{k_{air}}} = & a\cdot (1.1 \cdot 10^{9})^m \implies  a=0.14 \ ; \ m={\frac{1}{4}} \\ 
-    {\frac{h_w \cdot L}{k_{air}}} = & 0.14 \cdot (1.1 \cdot 10^{9})^{\frac{1}{4}} \\ 
-    {\frac{h_w \cdot 0.99}{0.0257}} = & 0.14 \cdot (1.1 \cdot 10^{9})^{\frac{1}{4}} \\ 
-    h_w = & {\frac{0.0257}{0.99}} \cdot 0.14 \cdot (1.1 \cdot 10^{9})^{\frac{1}{4}} \\ 
-    h_w = & 3.730 \ {\frac {W}{m^2 \cdot k}} \\ 
-    \label{eq:hw} 
-\end{aligned} 
-\end{equation} 
- 
-To know the heat loss in watts we need again to know the coefficient $U$<sub>o</sub>. The Equation \ref{eq:uoev} is more simplified because in this case we do not have a material between water and air. 
- 
-\begin{equation} 
-\begin{aligned} 
-     & {\frac{1}{U_0}}=  \boxed{\frac{1}{h_w \cdot {\frac{A_i}{A_o}}}}\\ 
-     & {\frac{1}{U_0}}=  \boxed{\frac{1}{3.730 \cdot {\frac{3.424}{3.456}}}} \\ 
-     & {\frac{1}{U_0}}=  0.271 \\ 
-                & U_0=  3.695 \ {\frac{W}{m^2 \cdot k}} \\ 
-       \label{eq:uoev} 
-\end{aligned} 
-\end{equation} 
- 
-From the heat transfer Equation \ref{eq:qev}, we calculate heat lost through evaporation ($q$<sub>ev</sub>) \\ 
- 
-\begin{equation} 
-\begin{aligned} 
-      \dot{q}_{ev}=& U_0 \cdot A_0 \cdot \Delta T_{Total}\\ 
-      \dot{q}_{ev}=& 3.695 \cdot 3.456 \cdot 10 \\ 
-      \dot{q}_{ev}=& 127.699 \ W \\ 
-      \label{eq:qev} 
-    \end{aligned} 
-\end{equation} 
- 
-And we finish with Equation \ref{eq:fuckingfinal} that results our lost heat in watts per seconds. 
- 
-\begin{equation} 
-\begin{aligned} 
-     \dot{q}_{total}=& \dot{q}_{wall} + \dot{q}_{ev} \\ 
-     \dot{q}_{total}=& 70.952 + 129.699 \\ 
-     \dot{q}_{total}=& 198.631 \ W \\ 
-     \label{eq:fuckingfinal} 
-    \end{aligned} 
-\end{equation} 
-\\ 
-After this calculation we found one value, this value is the result after we apply a scenario. For safety, we will buy one 300 W heater. 
  
 +Table {{ref>tlabe100}} of resources: Human and Material
 +<table tlabe100>
 +<caption>Table of resources: Human and Material</caption>
 +^ Resource Name   ^ Cost [€] ^ Type ^  Intials ^ Allocation [%] ^ (Std) Rate [€/h] or [€/unit]^ Overtime [€/h]  ^ Cost/User ^ Accrue ^ Base ^
 +^ Arick            | 1 500.00| Work  |         A|            100|     4|       0|         0|Prorated|Standard|           
 +^ Francisco        | 1 500.00| Work  |         F|            100|     4|       0|         0|Prorated|Standard| 
 +^ Jan              | 1 500.00| Work  |         J|            100|     4|       0|         0|Prorated|Standard| 
 +^ Katoo            | 1 500.00| Work  |         K|            100|     4|       0|         0|Prorated|Standard| 
 +^ Rasmus           | 1 500.00| Work  |         R|            100|            4|       0|         0|Prorated|Standard| 
 +^ Viorel           | 1 500.00| Work  |         V|            100|     4|       0|         0|Prorated|Standard| 
 +^Raspberry Pi      |  31.95|  Material  |  RP| |  31.95|  |  |Prorated| |
 +^Arduino            22.90|  Material  |  AR| |  22.90|  |  |Prorated| |
 +^USB cable Raspberry Pi|  2.25|  Material  |  UCRP| |  2.25|  |  |Prorated| |
 +^USB cable Arduino |  2.85|  Material  |  UCAR| |  2.85|  |  |Prorated| | 
 +^Power supply Raspberry Pi|  12.24|  Material  |  PSRP| |  12.24|  |  |Prorated| |
 +^Jumper wires      |  12.00|  Material  |  JW| |  12.00|  |  |Prorated| |
 +^Memory card        10.90|  Material  |  MC| |  10.90|  |  |Prorated| |
 +^Webcam            |  11.90|  Material  |  W| |  11.90|  |  |Prorated| |
 +^Wi-fi dongle      |  9.80|  Material  |  WF| |  9.80|  |  |Prorated| |
 +^Arduino 4 channel relay module|  12.90|  Material  |  A4CRM| |  12.90|  |  |Prorated| |
 +^Water heater      |  38.61|  Material  |  WH| |  38.61|  |  |Prorated| |
 +^Water pump        |  ISEP|  Material  |  WP| |  0|  |  |Prorated| |
 +^Light led          7.40|  Material  |  LL| |  7.40|  |  |Prorated| |
 +^Automatic fish feeder|  15.89|  Material  |  AFF| |  15.89|  |  |Prorated| |
 +^Step motor        |  ISEP|  Material  |  SM| |  0|  |  |Prorated| |
 +^Temperature sensor|  7.30|  Material  |  TS| |  7.30|  |  |Prorated| |
 +^Water flow sensor |  12.24|  Material  |  WFS| |  12.24|  |  |Prorated| |
 +^Depth sensor      |  12.24|  Material  |  DS| |  12.24|  |  |Prorated| |
 +^Infrared sensor    8.40|  Material  |  IS| |  8.40|  |  |Prorated| |
 +</table>
QR Code
QR Code playground:playground (generated for current page)